HOME  »  Members  »  Integrated  »  Faculty
title Temperature Modulates the Secretome of the Phytopathogenic Fungus Lasiodiplodia theobromae
authors Felix, C; Duarte, AS; Vitorino, R; Guerreiro, ACL; Domingues, P; Correia, ACM; Alves, A; Esteves, AC
author full name Felix, Carina; Duarte, Ana S.; Vitorino, Rui; Guerreiro, Ana C. L.; Domingues, Pedro; Correia, Antonio C. M.; Alves, Artur; Esteves, Ana C.
title Temperature Modulates the Secretome of the Phytopathogenic Fungus Lasiodiplodia theobromae
nationality internacional
source Frontiers in Plant Science
language English
document type Article
author keywords phytopathogenic fungi; extracellular enzymes; secretome; cytotoxicity; global changes
abstract Environmental alterations modulate host-microorganism interactions. Little is known about how climate changes can trigger pathogenic features on symbiont or mutualistic microorganisms. Current climate models predict increased environmental temperatures. The exposing of phytopathogens to these changing conditions can have particularly relevant consequences for economically important species and for humans. The impact on pathogen/host interaction and the shift on their biogeographical range can induce different levels of virulence in new hosts, allowing massive losses in agricultural and health fields. Lasiodiplodia theobromae is a phytopathogenic fungus responsible for a number of diseases in various plants. It has also been described as an opportunist pathogen in humans, causing infections with different levels of severity. L. theobromae has a high capacity of adaptation to different environments, such as woody plants, moist argillaceous soils, or even humans, being able to grow and infect hosts in a wide range of temperatures (9-39 degrees C). Nonetheless, the effect of an increase of temperature, as predicted in climate change models, on L. theobromae is unknown. Here we explore the effect of temperature on two strains of L. theobrornae - an environmental strain. CAA019, and a clinical strain, CBS339.90. We show that both strains are cytotoxic to mammalian cells but while the environmental strain is cytotoxic mainly at 25 degrees C, the clinical strain is cytotoxic mainly at 30 and 37 degrees C. Extracellular gelatinolytic, xylanolytic, amylolytic, and cellulolytic activities at 25 and 37 degrees C were characterized by zymography and the secretome of both strains grown at 25, 30, and 37 degrees C were characterized by electrophoresis and by Orbitrap LC-MS/MS. More than 75% of the proteins were identified, mostly enzymes (glycosyl hydrolases and proteases). The strains showed different protein profiles, which were affected by growth temperature. Also, strain specific proteins were identified, such as a putative f5/8 type c domain protein known for being involved in pathogenesis - by strain CAA019 and a putative tripeptidyl-peptidase 1 protein, by strain CBS339.90. We showed that temperature modulates the secretome of L. theobromae. This modulation may be associated with host-specificity requirements. We show that the study of abiotic factors, such as temperature, is crucial to understand host/pathogen interactions and its impact on disease.
author address [Felix, Carina; Duarte, Ana S.; Correia, Antonio C. M.; Alves, Artur; Esteves, Ana C.] Univ Aveiro, Ctr Environm & Marine Studies, Dept Biol, Aveiro, Portugal; [Vitorino, Rui] Univ Aveiro, Dept Med Sci, Inst Res Biomed, Aveiro, Portugal; [Vitorino, Rui] Univ Porto, Fac Med, Dept Physiol & Cardiothorac Surg, Oporto, Portugal; [Guerreiro, Ana C. L.; Domingues, Pedro] Univ Aveiro, Dept Chem, Aveiro, Portugal; [Guerreiro, Ana C. L.; Domingues, Pedro] Univ Aveiro, QOPNA, Aveiro, Portugal
reprint address Esteves, AC (reprint author), Univ Aveiro, Ctr Environm & Marine Studies, Dept Biol, Aveiro, Portugal.
e-mail address acesteves@ua.pt
funding agency and grant number FCT/MEC through national funds [UID/AMB/50017 - POC1-01-0145-FEDER-007638]; QOPNA research Unit [UID/QUI/00062/2013]; iBiMED [UID/BIM/04501/2013]; UIDC [UID/IC/00051/2013]; RNEM [REDS/1504/REM/2005]; FEDER, within the PT Partnership Agreement and Compete; FEDER funding through COMPETE program; national funding through PCT within the research project ALIEN [PTDC/AGR-PRO/2183/2014 - POCI-01-0145-FEDER-016788]; PCT [IF/00835/2013, BPD/102572/2014, BPD/46290/2008, BD/97613/2013]
funding text Thanks are due, to FCT/MEC through national funds, for the financial support of CESAM (UID/AMB/50017 - POC1-01-0145-FEDER-007638), of QOPNA research Unit (UID/QUI/00062/2013), of iBiMED (UID/BIM/04501/2013), of UIDC (UID/IC/00051/2013) and RNEM (REDS/1504/REM/2005 that concerns the Portuguese Mass Spectrometry Network), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. This study was partially supported by FEDER funding through COMPETE program and by national funding through PCT within the research project ALIEN (PTDC/AGR-PRO/2183/2014 - POCI-01-0145-FEDER-016788). The authors acknowledge PCT financial support to AA (IF/00835/2013), to AE and to AD (BPD/102572/2014 and BPD/46290/2008) and to CF (BD/97613/2013).
cited references Al-Nasiry S, 2007, HUM REPROD, V22, P1304, DOI 10.1093/humrep/dem011; Alves A, 2008, FUNGAL DIVERS, V28, P1; Alves E, 2015, PHOTOCH PHOTOBIO SCI, V14, P1169, DOI 10.1039/c4pp00194j; Ammerman N. C., 2008, CURR PROTOC MICROBIO, DOI [10.1002/9780471729259.mca04es11, DOI 10.1002/9780471729259.MCA04ES11]; Azevedo JSN, 2012, ANTON LEEUW INT J G, V101, P819, DOI 10.1007/s10482-012-9697-z; Bebber DP, 2013, NAT CLIM CHANGE, V3, P985, DOI [10.1038/NCLIMATE1990, 10.1038/nclimate1990]; Bliska JB, 2009, NAT REV MICROBIOL, V7, P165, DOI 10.1038/nrmicro2049; Bregar O, 2012, FOOD TECHNOL BIOTECH, V50, P326; Carvalhais V, 2015, MOL IMMUNOL, V65, P429, DOI 10.1016/j.molimm.2015.02.024; Chaffin WL, 1998, MICROBIOL MOL BIOL R, V62, P130; Costa L, 2014, J VIROL METHODS, V209, P103, DOI 10.1016/j.jviromet.2014.09.013; Cruz A, 2013, ANTON LEEUW INT J G, V104, P385, DOI 10.1007/s10482-013-9961-x; de Lima FB, 2016, BIOL CONTROL, V99, P38, DOI 10.1016/j.biocontrol.2016.04.009; D'souza A. D., 2002, RESONANCE, V7, P51, DOI 10.1007/BF02896308; Duarte AS, 2007, BIOTECHNOL BIOENG, V97, P991, DOI 10.1002/bit.21259; Duarte AS, 2015, LETT APPL MICROBIOL, V60, P288, DOI 10.1111/lam.12373; Duarte A, 2009, CELL BIOL TOXICOL, V25, P99, DOI 10.1007/s10565-008-9058-x; Duarte AS, 2016, CRIT REV MICROBIOL, V42, P106, DOI 10.3109/1040841X.2014.904270; Eastburn DM, 2011, PLANT PATHOL, V60, P54, DOI 10.1111/j.1365-3059.2010.02402.x; Kikot GE, 2009, J BASIC MICROB, V49, P231, DOI 10.1002/jobm.200800231; Esteves AC, 2014, CAN J MICROBIOL, V60, P332, DOI 10.1139/cjm-2014-0134; Fernandes I, 2014, FUNGAL BIOL-UK, V118, P516, DOI 10.1016/j.funbio.2014.04.006; Galant A, 2012, NEW PHYTOL, V194, P220, DOI 10.1111/j.1469-8137.2011.04037.x; Gallana M, 2013, CURR ZOOL, V59, P427; Gibson DM, 2011, CURR OPIN MICROBIOL, V14, P264, DOI 10.1016/j.mib.2011.04.002; Gonzalez-Fernandez R, 2012, J PROTEOME RES, V11, P3, DOI 10.1021/pr200873p; Gonzalez-Fernandez R, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00839; Hube B, 2009, CURR OPIN MICROBIOL, V12, P347, DOI 10.1016/j.mib.2009.06.009; Hunter S, 2012, NUCLEIC ACIDS RES, V40, pD306, DOI 10.1093/nar/gkr948; Islam MS, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-493; Jami F, 2013, AUSTRALAS PLANT PATH, V42, P421, DOI 10.1007/s13313-013-0209-z; Karkowska-Kuleta J, 2009, ACTA BIOCHIM POL, V56, P211; Kindo AJ, 2010, INDIAN J MED MICROBI, V28, P167, DOI 10.4103/0255-0857.62499; King BC, 2011, BIOTECHNOL BIOFUELS, V4, DOI 10.1186/1754-6834-4-4; Kubicek CP, 2014, ANNU REV PHYTOPATHOL, V52, P427, DOI 10.1146/annurev-phyto-102313-045831; LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0; Lemos MFL, 2010, PROTEOMICS, V10, P873, DOI 10.1002/pmic.200900470; Lindner M, 2010, FOREST ECOL MANAG, V259, P698, DOI 10.1016/j.foreco.2009.09.023; MacDonald GM, 2008, PROG PHYS GEOG, V32, P139, DOI 10.1177/0309133308094081; Mandelc S, 2015, PROTEOMICS, V15, P787, DOI 10.1002/pmic.201400181; Monod M, 2002, INT J MED MICROBIOL, V292, P405, DOI 10.1078/1438-4221-00223; Murphy C, 2011, DATABASE-OXFORD, DOI 10.1093/database/bar020; Oksanen J., 2015, VEGAN COMMUNITY ECOL; Peterson R, 2011, MYCOL PROG, V10, P207, DOI 10.1007/s11557-010-0690-5; Phillips AJL, 2013, STUD MYCOL, P51, DOI 10.3114/sim0021; Pierleoni A, 2006, BIOINFORMATICS, V22, pE408, DOI 10.1093/bioinformatics/btl222; Pineiro C, 2010, FOOD RES INT, V43, P1791, DOI 10.1016/j.foodres.2009.11.012; R Core Team, 2015, R LANG ENV STAT COMP; Rawlings ND, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-437; Reichard U, 2006, APPL ENVIRON MICROB, V72, P1739, DOI 10.1128/AEM.72.3.1739-1748.2006; Rodriguez-Galvez E, 2015, EUR J PLANT PATHOL, V141, P477, DOI 10.1007/s10658-014-0557-8; Saha S, 2012, MYCOPATHOLOGIA, V174, P335, DOI 10.1007/s11046-012-9546-7; Santos AL, 2013, ENVIRON SCI TECHNOL, V47, P6306, DOI 10.1021/es400660g; Suman Saha, 2012, Microbiology Research, V3, P82; Summerbell RC, 2004, MED MYCOL, V42, P543, DOI 10.1080/13693780400005916; van den Brink J, 2011, APPL MICROBIOL BIOT, V91, P1477, DOI 10.1007/s00253-011-3473-2; van der Does HC, 2007, MOL PLANT MICROBE IN, V20, P1175, DOI 10.1094/MPMI-20-10-1175; Woo PCY, 2008, J CLIN MICROBIOL, V46, P380, DOI 10.1128/JCM.01137-07; Yike I, 2011, MYCOPATHOLOGIA, V171, P299, DOI 10.1007/s11046-010-9386-2; Yoshida M, 2002, FEMS MICROBIOL LETT, V217, P225, DOI 10.1016/S0378-1097(02)01068-6; Zhang ZQ, 2014, MOL PLANT MICROBE IN, V27, P590, DOI 10.1094/MPMI-10-13-0314-R
cited reference count 61
publisher city LAUSANNE
issn 1664-462X
29-character source abbreviation FRONT PLANT SCI
iso source abbreviation Front. Plant Sci.
publication date AUG 3
year published 2016
volume 7
article number 1096
digital object identifier (doi) 10.3389/fpls.2016.01096
page count 12
web of science category Plant Sciences
subject category Plant Sciences
document delivery number DS6LY
unique article identifier WOS:000380894500001
link http://dx.doi.org/10.3389/fpls.2016.01096