HOME  »  Members  »  Integrated  »  Post-Docs
 
title Effects of cadmium and resource quality on freshwater detritus processing chains: a microcosm approach with two insect species
authors Campos, D; Alves, A; Lemos, MFL; Correia, A; Soares, AMVM; Pestana, JLT
author full name Campos, Diana; Alves, Artur; Lemos, Marco F. L.; Correia, Antonio; Soares, Amadeu M. V. M.; Pestana, Joao L. T.
title Effects of cadmium and resource quality on freshwater detritus processing chains: a microcosm approach with two insect species
nationality internacional
source ECOTOXICOLOGY
language English
document type Article
author keywords Shredder-collector interactions; Facilitation; Indirect effects; Leaf decomposition; Chironomus
keywords plus SERICOSTOMA-VITTATUM TRICHOPTERA; STRESS-GRADIENT HYPOTHESIS; LEAF-LITTER; FOOD-WEB; CHIRONOMUS-RIPARIUS; EUCALYPTUS-GLOBULUS; AQUATIC INSECTS; GAMMARUS-PULEX; ECOSYSTEM; FACILITATION
abstract Detritus processing is vital for freshwater ecosystems that depend on the leaf litter from riparian vegetation and is mediated by microorganisms and aquatic invertebrates. Shredder invertebrates transform coarse particulate organic matter into fine particulate organic matter used as food by collector species. Direct and indirect effects of contaminants can impair detritus processing and thus affect the functioning of these ecosystems. Here, we assessed the combined effects of a toxic metal (cadmium) and resource quality (leaf species) on detritus processing and shredder-collector interactions. We considered two types of leaves, alder and eucalyptus that were microbially conditioned under different Cd concentrations in the laboratory. The microbial communities present on leaves were analyzed by Denaturing Gradient Gel Electrophoresis (DGGE), and we also measured microbial respiration rates. Sericostoma vittatum (a caddisfly shredder) and Chironomus riparius (a midge collector) were also exposed to Cd and allowed to consume the corresponding alder or eucalyptus leaves. We evaluated C. riparius growth and leaf mass loss in multispecies microcosms. Cadmium exposure affected leaf conditioning and fungal diversity on both leaf species, as assessed by DGGE. Cadmium exposure also affected the mass loss of alder leaves by reductions in detritivore feeding, and impaired C. riparius growth. Chironomus riparius consumed alder leaf discs in the absence of shredders, but S. vittatum appear to promote C. riparius growth in treatments containing eucalyptus. These results show that indirect effects of contaminants along detritus-processing chains can occur through effects on shredder-collector interactions such as facilitation but they also depend on the nutritional quality of detritus and on sensitivity and feeding plasticity of detritivore species.
author address [Campos, Diana; Alves, Artur; Lemos, Marco F. L.; Correia, Antonio; Soares, Amadeu M. V. M.; Pestana, Joao L. T.] Univ Aveiro, Dept Biol, P-3810193 Aveiro, Portugal; [Campos, Diana; Alves, Artur; Lemos, Marco F. L.; Correia, Antonio; Soares, Amadeu M. V. M.; Pestana, Joao L. T.] Univ Aveiro, CESAM, P-3810193 Aveiro, Portugal; [Lemos, Marco F. L.] Inst Politecn Leiria, ESTM, P-2520641 Peniche, Portugal; [Lemos, Marco F. L.] Inst Politecn Leiria, GIRM, P-2520641 Peniche, Portugal; [Soares, Amadeu M. V. M.] Univ Fed Tocantins, Programa Posgrad Prod Vegetal, BR-77402970 Gurupi, To Cep, Brazil
reprint address Pestana, JLT (reprint author), Univ Aveiro, Dept Biol, Campus Santiago, P-3810193 Aveiro, Portugal.
e-mail address jpestana@ua.pt
researcherid number Alves, Artur/C-3645-2008
orcid number Alves, Artur/0000-0003-0117-2958
funding text We are grateful to two anonymous reviewers for their comments and suggestions that greatly improved this manuscript. Financial support for this work was provided by the projects
cited references ARSUFFI TL, 1989, OECOLOGIA, V79, P30, DOI 10.1007/BF00378236; Barlocher F, 2002, FRESHWATER BIOL, V47, P1123, DOI 10.1046/j.1365-2427.2002.00836.x; Batish DR, 2008, FOREST ECOL MANAG, V256, P2166, DOI 10.1016/j.foreco.2008.08.008; Batista D, 2012, ENVIRON POLLUT, V169, P35, DOI 10.1016/j.envpol.2012.05.021; Blockwell SJ, 1998, ARCH ENVIRON CON TOX, V34, P41; Brix KV, 2011, SCI TOTAL ENVIRON, V409, P4187, DOI 10.1016/j.scitotenv.2011.06.061; Bruno JF, 2003, TRENDS ECOL EVOL, V18, P119, DOI 10.1016/S0169-5347(02)00045-9; Bundschuh M, 2011, AQUAT TOXICOL, V104, P32, DOI 10.1016/j.aquatox.2011.03.010; Callisto M, 2007, REV BRAS ZOOL, V24, P442, DOI 10.1590/S0101-81752007000200023; CALOW P, 1991, COMP BIOCHEM PHYS C, V100, P3, DOI 10.1016/0742-8413(91)90110-F; Campos J, 2009, INT REV HYDROBIOL, V94, P472, DOI 10.1002/iroh.200811155; Canhoto C, 2007, INT REV HYDROBIOL, V92, P173, DOI 10.1002/iroh.200510956; Canhoto C, 1999, MICROB ECOL, V37, P163; Canhoto C, 1996, HYDROBIOLOGIA, V333, P79; Cardinale BJ, 2002, NATURE, V415, P426, DOI 10.1038/415426a; Costantini ML, 2010, FRESHWATER BIOL, V55, P2281, DOI 10.1111/j.1365-2427.2010.02433.x; Costantini ML, 1998, HYDROBIOLOGIA, V368, P17, DOI 10.1023/A:1003296620693; Daugherty MP, 2002, ECOL ENTOMOL, V27, P541, DOI 10.1046/j.1365-2311.2002.00446.x; De Coen WM, 2003, ENVIRON TOXICOL CHEM, V22, P1632, DOI 10.1897/1551-5028(2003)22<1632:TMBLRB>2.0.CO;2; Dieterich M, 1997, FRESHWATER BIOL, V38, P387, DOI 10.1046/j.1365-2427.1997.00252.x; Englert D, 2012, ENVIRON POLLUT, V167, P41, DOI 10.1016/j.envpol.2012.03.024; Faria MS, 2006, SCI TOTAL ENVIRON, V371, P125, DOI 10.1016/j.scitotenv.2006.08.036; Feio MJ, 2000, HYDROBIOLOGIA, V439, P7, DOI 10.1023/A:1004189316952; Fernandes I, 2011, OECOLOGIA, V166, P1019, DOI 10.1007/s00442-011-1930-3; Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4; Forrow DM, 2000, ENVIRON TOXICOL CHEM, V19, P2100, DOI 10.1897/1551-5028(2000)019<2100:TAMUOC>2.3.CO;2; Fugere V, 2012, J ANIM ECOL, V81, P1259, DOI 10.1111/j.1365-2656.2012.01994.x; GARDES M, 1993, MOL ECOL, V2, P113, DOI 10.1111/j.1365-294X.1993.tb00005.x; Gessner MO, 2002, ECOL APPL, V12, P498, DOI 10.1890/1051-0761(2002)012[0498:ACFULB]2.0.CO;2; Gessner MO, 2010, TRENDS ECOL EVOL, V25, P372, DOI 10.1016/j.tree.2010.01.010; Golovanova IL, 2008, INLAND WATER BIOL, V1, P93, DOI 10.1134/S1995082908010148; Graca M, 2001, FRESHWATER BIOL, V46, P947; Graça Manuel A S, 2002, ScientificWorldJournal, V2, P1173; Graca MAS, 2010, HYDROBIOLOGIA, V95, P27; Graca Manuel A.S., 2006, Limnetica, V25, P1; Greig HS, 2006, OIKOS, V112, P31; HEARD SB, 1994, J ANIM ECOL, V63, P451, DOI 10.2307/5562; HEARD SB, 1995, OIKOS, V72, P359, DOI 10.2307/3546121; Hernandez AD, 2008, INT J PARASITOL, V38, P683, DOI 10.1016/j.ijpara.2007.09.008; HILL WR, 1995, ECOLOGY, V76, P1297, DOI 10.2307/1940936; Hullett CR, 2003, COMMUN MONOGR, V70, P52, DOI 10.1080/0363775032000104586; Iwai N, 2009, FRESHWATER BIOL, V54, P2573, DOI 10.1111/j.1365-2427.2009.02267.x; Jabiol J, 2013, J ANIM ECOL, V82, P1042, DOI 10.1111/1365-2656.12079; Janssens L, 2013, ENVIRON POLLUT, V177, P143, DOI 10.1016/j.envpol.2013.02.016; Jonsson M, 2003, OECOLOGIA, V134, P554, DOI 10.1007/s00442-002-1148-5; Kawai T, 2007, P R SOC B, V274, P2503, DOI 10.1098/rspb.2007.0871; Larranaga A, 2009, FUND APPL LIMNOL, V175, P151, DOI 10.1127/1863-9135/2009/0175-0151; Luis AT, 2011, SCI TOTAL ENVIRON, V409, P4312, DOI 10.1016/j.scitotenv.2011.06.052; McKie BG, 2008, J ANIM ECOL, V77, P495, DOI 10.1111/j.1365-2656.2008.01357.x; Moreirinha C, 2011, ARCH ENVIRON CON TOX, V61, P211, DOI 10.1007/s00244-010-9610-6; Murrell EG, 2008, J MED ENTOMOL, V45, P375, DOI 10.1603/0022-2585(2008)45[375:DTATOO]2.0.CO;2; NAYLOR C, 1989, HYDROBIOLOGIA, V188, P517, DOI 10.1007/BF00027819; Paradise CJ, 2000, J ANIM ECOL, V69, P651, DOI 10.1046/j.1365-2656.2000.00423.x; Paradise CJ, 1997, OECOLOGIA, V109, P303, DOI 10.1007/s004420050088; Pascoal C, 2004, APPL ENVIRON MICROB, V70, P5266, DOI 10.1128/AEM.70.9.5266-5273.2004; Perez J, 2012, MICROB ECOL, V64, P279, DOI 10.1007/s00248-012-0022-1; Pestana JLT, 2009, AQUAT TOXICOL, V93, P138, DOI 10.1016/j.aquatox.2009.04.008; Pestana JLT, 2009, ENVIRON POLLUT, V157, P2328, DOI 10.1016/j.envpol.2009.03.027; Pestana JLT, 2007, CHEMOSPHERE, V68, P1556, DOI 10.1016/j.chemosphere.2007.02.053; Peters K, 2013, ENVIRON POLLUT, V180, P324, DOI 10.1016/j.envpol.2013.05.025; Relyea R, 2006, ECOL LETT, V9, P1157, DOI 10.1111/j.1461-0248.2006.00966.x; Rohr JR, 2006, TRENDS ECOL EVOL, V21, P606, DOI 10.1016/j.tree.2006.07.002; Roussel H, 2008, ENVIRON TOXICOL CHEM, V27, P637, DOI 10.1897/07-168.1; Ruetz CR, 2002, OECOLOGIA, V132, P307, DOI 10.1007/s00442-002-0953-1; Soares HMVM, 1999, ENVIRON POLLUT, V105, P311, DOI 10.1016/S0269-7491(99)00048-2; Srivastava DS, 2009, ECOL LETT, V12, P1016, DOI 10.1111/j.1461-0248.2009.01357.x; Starzomski BM, 2010, ECOL ENTOMOL, V35, P53, DOI 10.1111/j.1365-2311.2009.01155.x; Stief P, 2002, AQUAT MICROB ECOL, V27, P175, DOI 10.3354/ame027175; Stoler AB, 2013, OECOLOGIA, V173, P249, DOI 10.1007/s00442-013-2595-x; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Villanueva VD, 2011, HYDROBIOLOGIA, V678, P155, DOI 10.1007/s10750-011-0837-7; Wallace JB, 1997, SCIENCE, V277, P102, DOI 10.1126/science.277.5322.102; White TJ, 1990, PCR PROTOCOLS GUIDE, P315, DOI DOI 10.1139/B07-071; Woodward G, 2008, OIKOS, V117, P683, DOI 10.1111/j.2008.0030-1299.16500.x; Yee DA, 2007, J ANIM ECOL, V76, P1105, DOI 10.1111/j.1365-2656.2007.01297.x
cited reference count 75
publisher SPRINGER
publisher city DORDRECHT
publisher address VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
issn 0963-9292
29-character source abbreviation ECOTOXICOLOGY
iso source abbreviation Ecotoxicology
publication date JUL
year published 2014
volume 23
issue 5
beginning page 830
ending page 839
digital object identifier (doi) 10.1007/s10646-014-1223-9
page count 10
web of science category Ecology; Environmental Sciences; Toxicology
subject category Environmental Sciences & Ecology; Toxicology
document delivery number AI8GN
unique article identifier WOS:000337148800008
link http://dx.doi.org/10.1007/s10646-014-1223-9