HOME  »  Members  »  Integrated  »  Post-Docs
 
title Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit
authors Pardal, S; Drews, A; Alves, JA; Ramos, JA; Westerdahl, H
author full name Pardal, Sara; Drews, Anna; Alves, Jose A.; Ramos, Jaime A.; Westerdahl, Helena
title Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit
nationality internacional
source IMMUNOGENETICS
language English
document type Article
author keywords Major histocompatibility complex; MHC class I; Limosa limosa islandica; Charadriiformes
keywords plus MAJOR HISTOCOMPATIBILITY COMPLEX; PHYLOGENETIC NETWORKS; ANTIGEN PRESENTATION; PASSERINE BIRD; GENES; EVOLUTION; POLYMORPHISM; MOLECULES; SEQUENCES; RECOMBINATION
abstract The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.
author address [Pardal, Sara; Ramos, Jaime A.] Univ Coimbra, Dept Life Sci, MARE Marine & Environm Sci Ctr, P-3000456 Coimbra, Portugal; [Drews, Anna; Westerdahl, Helena] Lund Univ, MEEL, Ecol Bldg, SE-22362 Lund, Sweden; [Alves, Jose A.] Univ Aveiro, CESAM Ctr Environm & Marine Studies, Dept Biol, Campus Univ Santiago, P-3810193 Aveiro, Portugal; [Alves, Jose A.] Univ Iceland, South Iceland Res Ctr, IS-800 Fjolheimer, Selfoss, Iceland
reprint address Pardal, S (reprint author), Univ Coimbra, Dept Life Sci, MARE Marine & Environm Sci Ctr, P-3000456 Coimbra, Portugal.; Drews, A (reprint author), Lund Univ, MEEL, Ecol Bldg, SE-22362 Lund, Sweden.
e-mail address saralpardal@hotmail.com; anna.drews@biol.lu.se
funding agency and grant number Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BD/84629/2012]; FCT [SFRH/BPD/91527/2012]; RANNIS - Icelandic Research Council [130412-051]; Swedish Research Council [621-2011-3674, 2015-05149]; [UID/MAR/04292/2013]
funding text We thank and acknowledge the cooperation of T. Gunnarsson for his help on the fieldwork logistics in Iceland. We thank J. Jonsson, M. Strandh, and B. Canback for their valuable discussions and laboratory help and also E. O'Connor for her reading and commenting on the previous versions of this manuscript. Financial support to SP was provided by PhD grant SFRH/BD/84629/2012 from Fundacao para a Ciencia e a Tecnologia (FCT); to JAA by FCT grant SFRH/BPD/91527/2012. This study benefited from funding by RANNIS - Icelandic Research Council (130412-051), the strategic project (UID/MAR/04292/2013) granted to MARE and H. Westerdahl financed through Swedish Research Council (621-2011-3674 and 2015-05149) and provided the laboratory facilities for molecular analysis.
cited references Alcaide M, 2013, PEERJ, V1, DOI 10.7717/peerj.86; Alcaide M, 2009, CONSERV GENET, V10, P1349, DOI 10.1007/s10592-008-9653-7; Alves JA, 2013, ECOLOGY, V94, P11; Alves JA, 2010, BIRD STUDY, V57, P381, DOI 10.1080/00063651003678475; Baker AJ, 2007, BIOL LETT-UK, V3, P205, DOI 10.1098/rsbl.2006.0606; Balakrishnan CN, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-29; Benson DA, 2013, NUCLEIC ACIDS RES, V41, pD36, DOI 10.1093/nar/gks1195; Betts MJ, 2003, BIOINFORMATICS GENET, P289, DOI DOI 10.1002/0470867302.CH14; BJORKMAN PJ, 1987, NATURE, V329, P506, DOI 10.1038/329506a0; Bryant D, 2004, MOL BIOL EVOL, V21, P255, DOI 10.1093/molbev/msh018; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Buehler DM, 2013, IMMUNOGENETICS, V65, P211, DOI 10.1007/s00251-012-0669-2; Chen LC, 2015, SCI REP-UK, V5, DOI 10.1038/srep07963; Clark NJ, 2016, OIKOS, V125, P1358, DOI 10.1111/oik.03220; Cloutier A, 2011, IMMUNOGENETICS, V63, P377, DOI 10.1007/s00251-011-0516-x; Davidson R, 2011, TRENDS PARASITOL, V27, P238, DOI 10.1016/j.pt.2011.02.001; Delany S., 2009, ATLAS WADER POPULATI; Delport W, 2010, BIOINFORMATICS, V26, P2455, DOI 10.1093/bioinformatics/btq429; Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105; Drews A, 2017, BMC EVOLUTIONA UNPUB; Furlong RF, 2008, J MOL EVOL, V66, P384, DOI 10.1007/s00239-008-9092-6; Galan M, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-296; Gill Jennifer A., 2007, Wader Study Group Bulletin, V114, P43; Gonzalez-Quevedo C, 2015, IMMUNOGENETICS, V67, P149, DOI 10.1007/s00251-014-0822-1; GROSSBERGER D, 1992, IMMUNOGENETICS, V36, P166, DOI 10.1007/BF00661093; Halenius A, 2015, CELL MOL IMMUNOL, V12, P139, DOI 10.1038/cmi.2014.105; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Hess CM, 2002, BIOSCIENCE, V52, P423, DOI 10.1641/0006-3568(2002)052[0423:TEOTMH]2.0.CO;2; Huson DH, 2006, MOL BIOL EVOL, V23, P254, DOI 10.1093/molbev/msj030; JONES DT, 1992, COMPUT APPL BIOSCI, V8, P275; Karlsson M, 2013, J MOL EVOL, V77, P8, DOI 10.1007/s00239-013-9575-y; Kaufman J, 1994, Semin Immunol, V6, P411, DOI 10.1006/smim.1994.1050; Kaufman J, 1999, NATURE, V401, P923, DOI 10.1038/44856; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; KIMURA M, 1980, J MOL EVOL, V16, P111, DOI 10.1007/BF01731581; KLEIN J, 1990, IMMUNOGENETICS, V31, P217; Pond SLK, 2006, MOL BIOL EVOL, V23, P1891, DOI 10.1093/molbev/msl051; Kumar S, 2016, MOL BIOL EVOL, V33, P1870, DOI 10.1093/molbev/msw054; Lighten J, 2014, MOL ECOL RESOUR, V14, P753, DOI 10.1111/1755-0998.12225; Moon DA, 2005, J IMMUNOL, V175, P6702; Murphy W, 2017, JANEWAYS IMMUNOLOGY; Neefjes J, 2011, NAT REV IMMUNOL, V11, P823, DOI 10.1038/nri3084; Nei M, 1997, P NATL ACAD SCI USA, V94, P7799, DOI 10.1073/pnas.94.15.7799; O'Connor EA, 2016, MOL ECOL, V25, P977, DOI 10.1111/mec.13530; Piersma T, 1997, OIKOS, V80, P623, DOI 10.2307/3546640; Piersma Theunis, 2003, Wader Study Group Bulletin, V100, P5; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; Richardson DS, 2001, MOL ECOL, V10, P2263, DOI 10.1046/j.0962-1083.2001.01355.x; Rodgers JR, 2005, NAT REV IMMUNOL, V5, P459, DOI 10.1038/nri1635; SALTER RD, 1989, NATURE, V338, P345, DOI 10.1038/338345a0; SAPER MA, 1991, J MOL BIOL, V219, P277, DOI 10.1016/0022-2836(91)90567-P; Schut E, 2011, IMMUNOGENETICS, V63, P531, DOI 10.1007/s00251-011-0532-x; Sebastian A, 2016, MOL ECOL RESOUR, V16, P498, DOI 10.1111/1755-0998.12453; Sepil I, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-68; SHAWAR SM, 1994, ANNU REV IMMUNOL, V12, P839, DOI 10.1146/annurev.immunol.12.1.839; Shiina T, 2006, ANIM SCI J, V77, P151, DOI 10.1111/j.1740-0929.2006.00333.x; Shum BP, 1999, IMMUNOGENETICS, V49, P479, DOI 10.1007/s002510050524; Sommer Simone, 2005, Frontiers in Zoology, V2, P1, DOI 10.1186/1742-9994-2-16; Spurgin LG, 2011, MOL ECOL, V20, P5213, DOI 10.1111/j.1365-294X.2011.05367.x; Strandh M, 2011, IMMUNOGENETICS, V63, P653, DOI 10.1007/s00251-011-0534-8; Stutz WE, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100587; TAKAHATA N, 1990, P NATL ACAD SCI USA, V87, P2419, DOI 10.1073/pnas.87.7.2419; TAMURA K, 1992, MOL BIOL EVOL, V9, P678; Wallny HJ, 2006, P NATL ACAD SCI USA, V103, P1434, DOI 10.1073/pnas.0507386103; Wang BA, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-180; Welch JJ, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-53; Westerdahl H, 1999, IMMUNOGENETICS, V49, P158, DOI 10.1007/s002510050477; Westerdahl H, 2007, J ORNITHOL, V148, pS469, DOI 10.1007/s10336-007-0230-5; Westerdahl H, 2014, ANIMAL MOVEMENT ACROSS SCALES, P126; Wutzler R, 2012, GENETICA, V140, P349, DOI 10.1007/s10709-012-9679-0; Yang ZH, 2002, MOL BIOL EVOL, V19, P49; Zagalska-Neubauer M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-395; Zeng QQ, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0609-0
cited reference count 73
publisher SPRINGER
publisher city NEW YORK
publisher address 233 SPRING ST, NEW YORK, NY 10013 USA
issn 0093-7711
29-character source abbreviation IMMUNOGENETICS
iso source abbreviation Immunogenetics
publication date JUL
year published 2017
volume 69
issue 7
beginning page 463
ending page 478
digital object identifier (doi) 10.1007/s00251-017-0993-7
page count 16
web of science category Genetics & Heredity; Immunology
subject category Genetics & Heredity; Immunology
document delivery number EX9OC
unique article identifier WOS:000403586400006
link http://dx.doi.org/10.1007/s00251-017-0993-7
CESAM authors